Let’s Stop Pretending Estimates Are Exact

Some days I feel like estimates and plans are worthless. Other days I find myself idly speculating that if only we were better at planning and estimating, everything would be beautiful.

In an engineering organization, we want realistic plans. Realistic plans and roadmaps will hypothetically help us utilize our capacity effectively and avoid overcommitting. And our plans are usually built on estimates; that’s why we believe that “correct” estimates are more likely to generate a realistic plan. Therefore, we believe that correct estimates are useful for planning.

On the other hand, if you’ve ever worked with engineers, you also believe that estimates are never correct. Something always gets in the way, or we pad the estimate out to avoid being held responsible for missing a deadline, or (occasionally) the task ends up being much simpler than we expected. The time we estimate is never the time it actually takes to do the job.C7ofJ_scaled

These two statements seem to be in contradiction, but they are not. There is a key to holding both these beliefs in your head at once. And I believe that if an entire engineering org were to grasp this key together, it would unlock enormous potential.

The key is to treat uncertainty as a first-class citizen.

Why This Is Hard

Developing organizational intuition in about estimates is really hard. It is in fact so hard that I’m not aware of any organization that has done it. I see two big reasons for this:

  1. We don’t have good awareness of the amount of uncertainty in our estimates.
  2. We pay lip service to the idea that estimates aren’t perfect, but we plan as if they are.

1. Uncalibrated estimates

When we give estimates, those estimates aren’t calibrated to a particular uncertainty level. Everybody has different levels of confidence in their estimates, and those levels are neither discussed nor adjusted. As a result, engineers and project managers find it impossible to turn estimates into meaningful plans.

2. Planning with incorrect use of uncertainty

You’ve surely noticed uncertainty being ignored. It usually goes something like this:

PM: How soon do you think you can have the power converters re-triangulated?
ENG: I’m not sure. It could take a day, or it could take five.
PM: I understand. What do you think is most likely? Can we say three days?
ENG: Sure, three or four.
PM: Okay. I’ll put it down for four days, just to be safe.

Both sides acknowledge that there is a great deal of uncertainty in this estimate. But a number needs to get written down, so they write down 4. In this step, information about uncertainty is lost. So it shouldn’t be a surprise later when re-triangulating the power converters takes 7 days and the whole plan gets thrown off.


Suppose 5 teams are working independently on different parts of a project. Each team has said they’re 80% confident that their part will be done by the end of the year. The project manager will want to know how likely is it that all five parts will be done by the end of the year?

When we answer questions like this, we don’t usually think in terms of probability. And even if we do think in terms of probability, it’s easy to get it wrong. If you ask non-mathy people this question (and most project managers I’ve worked with are not mathy), their intuition will be: 80%.

DreidelsBut that intuition is extremely misleading. What we’re dealing with is a set of 5 independent events, each with 80% probability. Imagine rolling five 5-sided dice. Or, since 5-sided dice are not really a thing, imagine spinning five 5-sided dreidels (which are also not really a thing, but are at least geometrically possible). You spin your five dreidels and if any of them comes up ש‎, the project fails to meet its end-of-year deadline. The probability of success, then, is:

(80%)⁵ = 80% ⋅ 80% ⋅ 80% ⋅ 80% ⋅ 80% = 32.8%

Awareness of the probabilistic nature of estimates makes it obvious that a bunch of high-confidence estimates do not add up to a high-confidence estimate.

To make matters even worse, most organizations don’t even talk about how confident they are. In real life, we wouldn’t even know the uncertainties associated with our teams’ estimates (this is problem 1: uncalibrated estimates). Nobody would even be talking about probabilities. They’d be saying “All five teams said they’re pretty sure they can be done by the end of the year, so we can be pretty sure we’ll hit an end-of-year target for the project.” But they’d be dead wrong.

Why This Is Worth Fixing

I believe that poor handling of uncertainty is a major antagonist not just of technical collaboration, but of social cohesion at large. When uncertainty is not understood:

  • Project managers feel let down. Day in and day out they ask for reasonable estimates, and they’re left explaining to management why the estimates were all incorrect and the project is going to be late.
  • Engineers feel held to unreasonable expectations. They have to commit to a single number, and when that number is too low they have to work extra hard to hit it anyway. It feels like being punished for something that’s no one’s fault.
  • Managers feel responsible for failures. Managers are supposed to help their teams collaborate and plan, but planning without respect for uncertainty leads to failure every time. And what’s worse, if you don’t understand the role of uncertainty, you can’t learn from the failure.
  • Leadership makes bad investments. Plans may look certain when they’re not at all. Return on an investment often degrades quickly with delays, making what looked like a good investment on paper turn out to be a dud.

Fostering an intuition for uncertainty in an organization could help fix all these problems. I think it would be crazy not to at least try.

How To Fix It

Okay, here’s the part where I admit that I don’t quite know what to do about this problem. But I’ve got a couple ideas.

1. Uncalibrated estimates

To solve the problem of uncalibrated estimates (estimates whose uncertainty is wrong or never acknowledged), what’s needed is practice. Teams need to make 80%-confidence estimates for everything – big and small – and record those estimates somewhere. Then when the work is actually done, they can review their estimates and compare to the real-world completion time. If they didn’t get about 80% of their estimates correct, they can learn to adjust their confidence.

Estimating with a certain level of confidence is a skill that can be learned through practice. But practice, as always, takes a while and it needs to be consistent. I’m not sure how one would get an organization to put in the work, but I do believe it would pay off if they did.

2. Planning with incorrect use of uncertainty

Managers and project managers should get some training in how to manipulate estimates with uncertainty values attached.

Things get tricky when tasks need to be done one after the other instead of in parallel. But I like to think we’re not adding complexity to the process of planning; rather we’re just revealing the ways in which the current process is broken. And recognizing the limits of our knowledge is a great way to keep our batch sizes small and our planning horizons close.

I think we need to get used to calibrating estimates before we can see our way clear to address the planning challenges.

Can It Be Fixed?

It strikes me as super hard to fix the problems I’ve outlined here in a company that already has its old habits. Perhaps a company needs to be built from the ground up with a culture of uncertainty awareness. But I hope not.

If there is a way to make uncertainty a first-class citizen, I truly believe that engineering teams will benefit hugely from it.

Falsifiability: why you rule things out, not in

This June, I had the honor of speaking at O’Reilly Velocity 2016 in Santa Clara. My topic was Troubleshooting Without Losing Common Ground, which I’ve written about and written about before that too.

I was pretty happy with my talk, especially the Star Trek: The Next Generation vignette in the middle. It was a lot of ideas to pack into a single talk, but I think a lot of people got the point. However, I did give a really unsatisfactory answer (30m46s) to the first question I received. The question was:

In the differential diagnosis steps, you listed performing tests to falsify assumptions. Are you borrowing that from medicine? In tech are we only trying to falsify assumptions, or are we sometimes trying to validate them?

I didn’t have a real answer at the time, so I spouted some bullshit and moved on. But it’s a good question, and I’ve thought more about it, and I’ve come up with two (related) answers: a common-sense answer and a pretentious philosophical answer.

The Common Sense Answer

My favorite thing about differential diagnosis is that it keeps the problem-solving effort moving. There’s always something to do. If you’re out of hypotheses, you come up with new ones. If you finish a test, you update the symptoms list. It may not always be easy to make progress, but you always have a direction to go, and everybody stays on the same page.

But when you seek to confirm your hypotheses, rather than to falsify others, it’s easy to fall victim to tunnel vision. That’s when you fixate on a single idea about what could be wrong with the system. That single idea is all you can see, as if you’re looking at it through a tunnel whose walls block everything else from view.

Tunnel vision takes that benefit of differential diagnosis – the constant presence of a path forward – and negates it. You keep running tests to try to confirm your hypothesis, but you may never prove it. You may just keep getting tests results that are consistent with what you believe, but that are also consistent with an infinite number of hypotheses you haven’t thought of.

A focus on falsification instead of verification can be seen as a guard against tunnel vision. You can’t get stuck on a single hypothesis if you’re constrained to falsify other ones. The more alternate hypotheses you manage to falsify, the more confident you get that you should be treating for the hypotheses that might still be right.

Now, of course, there are times when it’s possible to verify your hunch. If you have a highly specific test for a problem, then by all means try it. But in general it’s helpful to focus on knocking down hypotheses rather than propping them up.

The Pretentious Philosophical Answer

I just finished Karl Popper’s ridiculously influential book The Logic of Scientific Discovery. If you can stomach a dense philosophical tract, I would highly recommend it.

Karl “Choke Right On It, Logical Positivism” Popper

Published in 1959 – but based on Popper’s earlier book Logik der Forschung from 1934 – The Logic Of Scientific Discovery makes a then-controversial [now widely accepted (but not universally accepted, because philosophers make cats look like sheep, herdability-wise)] claim. I’ll paraphrase the claim like so:

Science does not produce knowledge by generalizing from individual experiences to theories. Rather, science is founded on the establishment of theories that prohibit classes of events, such that the reproducible occurrence of such events may falsify the theory.

Popper was primarily arguing against a school of thought called logical positivism, whose subscribers assert that a statement is meaningful if and only if it is empirically testable. But what matters to our understanding of differential diagnosis isn’t so much Popper’s absolutely brutal takedown of logical positivism (and damn is it brutal), as it is his arguments in favor of falsifiability as the central criterion of science.

I find one particular argument enlightening on the topic of falsification in differential diagnosis. It hinges on the concept of self-contradictory statements.

There’s an important logical precept named – a little hyperbolically – the Principle of Explosion. It asserts that any statement that contradicts itself (for example, “my eyes are brown and my eyes are not brown”) implies all possible statements. In other words: if you assume that a statement and its negation are both true, then you can deduce any other statement you like. Here’s how:

  1. Assume that the following two statements are true:
    1. “All cats are assholes”
    2. “There exists at least one cat that is not an asshole”
  2. Therefore the statement “Either all cats are assholes, or 9/11 was an inside job” (we’ll call this Statement A) is true, since the part about the asshole cats is true.
  3. However, if the statement “there exists at least one cat that is not an asshole” is true too (which we’ve assumed it is) and 9/11 were not an inside job, then Statement A would be false, since neither of its two parts would be true.
  4. So the only way left for Statement A to be true is for “9/11 was an inside job” to be a true statement. Therefore, 9/11 was an inside job.
  5. Wake up, sheeple.


The Principle of Explosion is the crux of one of Popper’s most convincing arguments against the Principle of Induction as the basis for scientific knowledge.

It was assumed by many philosophers of science before Popper that science relied on some undefined Principle of Induction which allowed one to generalize from a finite list of experiences to a general rule about the universe. For example, the Principle of Induction would allow one to deduce from enough statements like “I dropped a ball and it fell” and “My friend dropped a wrench and it fell” to “When things are dropped, they fall.” But Popper argued against the existence of the Principle of Induction. In particular, he pointed out that:

If there were some way to prove a general rule by demonstrating the truth of a finite number of examples of its consequences, then we would be able to deduce anything from such a set of true statements.

Right? By the Principle of Explosion, a self-contradictory statement implies the truth of all statements. If we accepted the Principle of Induction, then the same evidence that proves “When things are dropped, they fall” would also prove “All cats are assholes and there exists at least one cat that is not an asshole,” which would prove every statement we can imagine.

So what does this have to do with falsification in differential diagnosis? Well, imagine you’ve come up with these hypotheses to explain some API slowness you’re troubleshooting:

Hypothesis Alpha: contention on the table cache is too high, so extra latency is introduced for each new table opened

Hypothesis Bravo: we’re hitting our IOPS limit on the EBS volume attached to the database server

There are many test results that would be compatible with Hypothesis Alpha. But unless you craft your tests very carefully, those same results will also be compatible with Hypothesis Bravo. Without a highly specific test for table cache contention, you can’t prove Hypothesis Alpha through a series of observations that agree with it.

What you can do, however, is try to quickly falsify Hypothesis Bravo by checking some graphs against some AWS configuration data. And if you do that, then Hypothesis Alpha is the your best remaining guess. Now you can start treating for table cache contention on the one hand, and attempting the more time-consuming process (especially if it’s correct!) of falsifying Hypothesis Alpha.

Isn’t this kind of abstract?

Haha OMG yes. It’s the most abstract. But that doesn’t mean it’s not a useful idea.

If it’s your job to troubleshoot problems, you know that tunnel vision is very real. If you focus on generating alternate hypotheses and falsifying them, you can resist tunnel vision’s allure.

A Moral Thought Experiment That Breaks My Brain

Note: This blog post is not about computers or math or DevOps. I like those things, and I write about them usually. But not today.

Sometimes I read something and I’m like “that can’t be right,” but then I think about it for a while and I can’t figure out why it’s not right. This happens to me especially often with arguments about moral intuition.

We humans make moral judgements and decisions all day, every day, without even thinking about it. It’s a central part of what makes us us.

Try this: pick a moral belief that you hold very firmly. For example, I went with, “It’s wrong to treat people with less respect because of their sexual orientation.” Now, try to imagine no longer believing that thing. Imagine that everything about your mind is the same, except you no longer hold to that one belief or its consequences. It’s hard, isn’t it? It really feels like you wouldn’t be the same person.

We know that our moral beliefs change over the course of our lives, and so that feeling of our selves being tightly coupled to those beliefs must be an illusion. But still, it’s very disturbing when a well constructed thought experiment forces us to reevaluate our basic moral intuitions.

What follows is a thought experiment that has such a brain-breaking effect on me. We can’t all be moral geniuses who cut right through the Trolley Problem like this kid:

Making People Happy, or Making Happy People?

On this week’s episode of Sam Harris’s Waking Up podcast, the Scottish moral philosopher and effective altruism wunderkind Will MacAskill gave a very brief but very brain-breaking argument. It’s had me scratching my chin intensely for a couple days now.

It seems intuitive to me that we, as humans, have no moral obligation to make sure that more humans come into existence in the future. After all, it’s not like you owe anything to hypothetical people who will never come into existence. There seems to me to be no way that such a moral obligation could arise. I think a lot of people would agree with this intuition.

Will MacAskill’s argument (and I’m not sure it’s his originally, but I heard it from him) goes like this. Imagine what we’ll call World A. World A has some number of people in it, living their lives. And let’s also imagine World B, which has all the same people as World A, plus another person named Harry. Everybody in World B is exactly as well-off as their counterparts in World A, and Harry’s well-being is at a 6 out of 10. He’s moderately well-off.

Photo credit: Brett Swanson

According to my intuition that there is no moral reason to prefer World B, in which Harry exists, to World A, in which Harry never came into being. If we say the total moral value of World A is a and the moral value of World B is b, I believe that a = b.

Alright, MacAskill says, now let’s introduce World C. This world is identical to World A, except it includes a person named Harry whose well-being is an 8 out of 10. He’s very happy almost all the time!


Now, by the same logic I used before, letting World C’s total moral value equal c, I have to say that a = c. This world with a Harry at well-being level 8 is not preferable to a world in which Harry never existed.

This puts me in a bit of a pickle. Because, by straight-up math, we know that if a = b and a = c then b = c. In other words, there’s no moral reason to prefer World C to World B. But come on! World C is exactly like World B except that Harry is better off. Obviously it’s an objectively preferable world.

I feel reductio ad absurdum‘d and it makes me very uncomfortable. Does this mean I have an obligation to have kids if I think I can give them happy lives? I don’t believe that, but I’m not sure what to believe now.

Concert line (Félix Pagaimo via Flickr)

The most important thing to understand about queues

You only need to learn a little bit of queueing theory before you start getting that ecstatic “everything is connected!” high that good math always evokes. So many damn things follow the same set of abstract rules. Queueing theory lets you reason effectively about an enormous class of diverse systems, all with a tiny number of theorems.

I want to share with you the most important fundamental fact I have learned about queues. It’s counterintuitive, but once you understand it, you’ll have deeper insight into the behavior not just of CPUs and database thread pools, but also grocery store checkout lines, ticket queues, highways – really just a mind-blowing collection of systems.

Okay. Here’s the Important Thing:

As you approach maximum throughput, average queue size – and therefore average wait time – approaches infinity.

“Wat,” you say? Let’s break it down.


A queueing is exactly what you think it is: a processor that processes tasks whenever they’re available, and a queue that holds tasks until the processor is ready to process them. When a task is processed, it leaves the system.

A queueing system with a single queue and a single processor. Tasks (yellow circles) arrive at random intervals and take different amounts of time to process.

The Important Thing I stated above applies to a specific type of queue called an M/M/1/∞ queue. That blob of letters and numbers and symbols is a description in Kendall’s notation. I won’t go into the M/M/1 part, as it doesn’t really end up affecting the Important Thing I’m telling you about. What does matter, however, is that ‘∞’.

The ‘∞’ in “M/M/1/∞” means that the queue is unbounded. There’s no limit to the number of tasks that can be waiting in the queue at any given time.

Like most infinities, this doesn’t reflect any real-world situation. It would be like a grocery store with infinite waiting space, or an I/O scheduler that can queue infinitely many operations. But really, all we’re saying with this ‘∞’ is that the system under study never hits its maximum occupancy.


The processor (or processors) of a queueing system have a given total capacity. Capacity is the number of tasks per unit time that can be processed. For an I/O scheduler, the capacity might be measured in IOPS (I/O operations per second). For a ticket queue, it might be measured in tickets per sprint.

Consider a simple queueing system with a single processor, like the one depicted in the GIF above. If, on average, 50% of the system’s capacity is in use, that means that the processor is working on a task 50% of the time. At 0% utilization, no tasks are ever processed. At 100% utilization, the processor is always busy.

Let’s think about 100% utilization a bit more. Imagine a server with all 4 of its CPUs constantly crunching numbers, or a dev team that’s working on high-priority tickets every hour of the day. Or a devOp who’s so busy putting out fires that he never has time to blog.

When a system has steady-state 100% utilization, its queue will grow to infinity. It might shrink over short time scales, but over a sufficiently long time it will grow without bound.

Why is that?

If the processor is always busy, that means there’s never even an instant when a newly arriving task can be assigned immediately to the processor. That means that, whenever a task finishes processing, there must always be a task waiting in the queue; otherwise the processor would have an idle moment. And by induction, we can show that a system that’s forever at 100% utilization will exceed any finite queue size you care to pick:

No good. Processor idle, so utilization can’t be 100%.
No good. As soon as the task finishes, we’re back to the above picture.
No good. As soon as the current task finishes, we’re back to the above picture, which we’ve already decided is no good.
You get the idea.

So basically, the statements “average capacity utilization is 100%” and “the queue size is growing without bound” are equivalent. And remember: by Little’s Law, we know that average service time is directly proportional to queue size. That means that a queueing system with 100% average capacity utilization will have wait times that grow without bound.

If all the developers on a team are constantly working on critical tickets, then the time it takes to complete tickets in the queue will approach infinity. If all the CPUs on a server are constantly grinding, load average will climb and climb. And so on.

Now you may be saying to yourself, “100% capacity utilization is a purely theoretical construct. There’s always some about of idle capacity, so queues will never grow toward infinity forever.” And you’re right. But you might be surprised at how quickly things start to look ugly as you get closer to maximum throughput.

What about 90%?

The problems start well before you get to 100% utilization. Why?

Sometimes a bunch of tasks will just happen to show up at the same time. These tasks will get queued up. If there’s not much capacity available to crunch through that backlog, then it’ll probably still be around when the next random bunch of tasks show up. The queue will just keep getting longer until there happens to be along enough period of low activity to clear it out.

I ran a qsim simulation to illustrate this point. It simulates a single queue that can process, on average, one task per second. I ran the simulation for a range of arrival rates to get different average capacity usages. (For the wonks: I used a Poisson arrival process and exponentially distributed processing times). Here’s the plot:


Notice how things start to get a little crazy around 80% utilization. By the time you reach 96% utilization (the rightmost point on the plot), average wait times are already 20 seconds. And what if you go further and run at 99.8% utilization?


Check out that Y axis. Crazy. You don’t want any part of that.

This is why overworked engineering teams get into death spirals. It’s also why, when you finally log in to that server that’s been slow as a dog, you’ll sometimes find that it has a load average of like 500. Queues are everywhere.

What can be done about it

To reiterate:

As you approach maximum throughput, average queue size – and therefore average wait time – approaches infinity.

What’s the solution, then? We only have so many variables to work with in a queueing system. Any solution for the exploding-queue-size problem is going to involve some combination of these three approaches:

  1. Increase capacity
  2. Decrease demand
  3. Set an upper bound for the queue size

I like number 3. It forces you to acknowledge the fact that queue size is always finite, and to think through the failure modes that a full queue will engender.

Stay tuned for a forthcoming blog post in which I’ll examine some of the common methods for dealing with this property of queueing systems. Until then, I hope I’ve helped you understand a very important truth about many of the systems you encounter on a daily basis.

3 Things That Make Encryption Easier

Almost everyone (especially in ops) knows they should be better about encrypting secret data. And yet most organizations have at least a few passwords and secret keys checked into Git somewhere.

The ideal solution would be for everyone at your company to use PGP all the time, but that is a huge pain. Encryption tools are annoying to use, and a significant time investment is required to learn to use them correctly. And if security is hard, people will always find a way to avoid it.

In the last few months, I’ve adopted 3 new technologies that make secure storage and exchange of secret information at least bearable.

1: Blackbox

StackExchange’s blackbox tool makes it easy to store encrypted data in a Git repository. First you need to import into your personal keyring all the PGP keys you want to grant access to. Then you initialize the blackbox directory structure:

Once you’ve initialized blackbox, you can start adding administrators, which are keys that will be granted access to the secret data in the repository:

Now you can start adding secrets securely:

I really like how this tool gives my team a distributed, version-controlled repository of secret information. We can even give other teams access to the repository without worrying about exposing secrets!

My team uses this tool for shared passwords and SSL private keys, and it works great. Check it out.

2: Salt

At my company, we use Salt for config management. Like most config management systems, Salt lets you decouple the values in a config file from the file itself. You make a template of the config file that will appear on the node, and you put the values in a pillar (equivalent to a Chef databag, or a Puppet… whatever it’s called in Puppet).

So instead of storing a config file like this:

You store a template like this:

and a pillar (which is just a YAML file) like this:

Now suppose you don’t want to commit that super-secure password directly to your Salt repository. Instead, you can create a PGP keypair, and give the private key to your Salt server. Then you can encrypt the password with that key. Your pillar will now look like this:

When processing your template on the target node, Salt will seamlessly decrypt the password for you.

I love that I can give non-admins access to our Salt repo, and let them submit pull requests, without worrying about leaking passwords. To learn more about this Salt functionality, you can read the documentation for salt.renderers.gpg.

3: SecretShare

Salt’s GPG renderer and blackbox are great ways to store shared secret data, but what about transmitting secrets to particular people? In most organizations, when passwords and such need to be transmitted from employee to employee, insecure methods are used. Email, chat, and Google docs are very common media for transmitting secrets. They’re all saved indefinitely, meaning that an attacker who gains access to your account can gain access to all the secret info you’ve ever sent or received.

To make transmitting secrets as easy and secure as possible, my teammate Alex created secretshare. It lets you transmit arbitrary secret data to others in your organization, and it has immense advantages over other systems:

  • Secrets are never transmitted or stored in the clear, so a snooper can’t even read them if they manage to compromise the Amazon S3 bucket in which they’re stored.
  • Secrets are deleted from S3 after 24-48 hours, so a snooper can’t go back through the recipient’s or sender’s communication history later and retrieve them.
  • Secrets are encrypted with a one-time-use key, so a snooper can’t use the key from one secret to steal another.
  • Users don’t need Amazon AWS credentials, so a snooper can’t steal those credentials from a user.

Right now, secretshare only exists as a command-line utility, but we’re very close to having a web UI as well, which will make it even easier for non-technical people to use.


Security’s worst enemy is bad UX. It’s critical to make the most secure path also the easiest path. That’s what these three solutions aim to do, and they’ve made me feel much more comfortable with the security of secret data at my company. I hope they can do the same for you.

Start a Paper Club!

A few months ago, a work friend and I were commiserating about how we never make time to read any research. There’s all this fascinating, challenging stuff being written, we agreed, and we’re missing it all.

When a few more coworkers chimed in, saying they’d also like to push themselves to read more academic literature, we realized we were onto something. The next day, the Exosite Paper Club was born.

It’s been really fun to organize and participate in Paper Club these last few months. I’ve learned a lot, not just about the fields on which our reading material focused, but also about my coworkers and my company. Now I want to share some my excitement about this project and encourage you to start a Paper Club at your own company.

What Paper Club is and does

Paper Club is a group that meets every other week over lunch. We all prepare by reading a particular academic paper, and we discuss it in a free-form group session. Sometimes we teach each other about concepts from the paper, sometimes we brainstorm ways to apply ideas to our work at Exosite, and sometimes we just chat.

The paper for each session is selected by a participant from the previous session, and can be about any topic from project management to statistics to psychology to medicine. Readers of any skill level in the paper’s subject matter are warmly welcomed at meetings, but you can always skip a session if the topic doesn’t interest you. All we ask is that, when the material is hard for you, you push yourself and try to grasp it anyway.

We want a wide variety of participants, from DevOps to UI to sales & marketing, but we also want to read papers that are detailed enough to be challenging. To these ends, we have three guidelines for submitting a paper:

  1. Papers should be accessible. Try to pick papers at a technical level such that at least some of your peers will be able to understand most of the content. You want the session to be a discussion, not a lecture.
  2. Papers should be challenging. While accessibility is important, you don’t want your peers to have too easy a time. The best conversations happen when people are forced to push themselves a bit. It’s okay to suggest papers that are only accessible to those with a particular academic background, as long as you think the paper will create a good discussion with some subset of your coworkers.
  3. Papers should be deep. The best discussions tend to come from papers that dive pretty deep into a topic. Reviews and textbook chapters can be interesting, but we tend to prefer papers that go into detail on a specific topic.

What we’ve read so far

We’ve been doing Paper Club at Exosite since mid-November, and we’ve discussed 8 papers to date. I thought we’d be reading mostly computer science papers, but I couldn’t be happier with the variety we’ve gotten!

Here are a few of the papers that produced the most interesting discussions:

  • Confidence in Judgment: Persistence of the Illusion of Validity. This classic behavioral study from 1978 takes the well-established observation that people (even especially experts) are usually more confident in their judgments than they should be. The authors build a simple but powerful model for the mental processes responsible for this overconfidence, and present some suggestions for systematically curtailing it.
  • On Bullshit. If you’re like most engineers, you’re utterly allergic to bullshit. But have you ever thought about what makes bullshit bullshit? How it’s different from outright lying, and how it’s different from normal speech? This famous philosophical essay tries to answer these questions, and it provides some valuable insights for someone trying to excise bullshit from their life.
  • Why Johnny Can’t Encrypt. This 1999 analysis of PGP 5.0 usability raises some points that are crucial for anyone trying to design intuitive user experiences. The paper led us into a super productive critique of the metaphorical structure used in our own company’s documentation.

How it’s going

I have been really happy with the intellectual diversity of our Paper Club participants. Even when the paper under discussion is an especially wonky one, we get project managers, devs from all different software teams, salespeople, marketers, managers, and occasionally even company executives. Seeing all these people engage in thoughtful dialogue on such a wide variety of topics is inspiring. It takes me out of my DevOps bubble and reminds me that I work with some very interesting and smart folks.

I’d like to see how far we can stretch ourselves. Selfishly, I’d like us to read a math or linguistics paper some time, and help each other through it. I think that would be very rewarding.

Overall, I’m very glad we have a Paper Club here. I’d recommend it to anyone who likes people and/or learning. If you start one at your company, let me know how it goes!

The 10 Best Books I Read In 2015

I read 56 books in 2015, which is more than I’d read in the previous 5 years combined. Turns out books are pretty cool. Who knew?

Here are the 10 books I liked the most this year, in no particular order.

1. Metaphors We Live By (1980)

Goodreads___Metaphors_We_Live_By_by_George_Lakoff_—_Reviews__Discussion__Bookclubs__Lists.pngI got real into linguistics this year, and this book offers an interesting perspective on semantics. We usually think of metaphor as a poetic device. But this book argues that the whole human conceptual system is based on metaphor! According to George Lakoff, every concept we understand (short of concepts corresponding to our direct experience) is understood by analogy with a more concrete concept.

There are some very intriguing ideas in here. I didn’t necessarily buy (or even understand) them all, but I’m really glad I read this book.

2. The One World Schoolhouse: Education Reimagined (2012)

This thought-provoking book on education was written by the Khan Academy guy. He presents a lot of research pointing toward the hypothesis that self-paced “mastery learning” is much more broadly effective than the contemporary American model of arbitrarily delineated, one-speed-fits all classes.

Discussing this book with my friends (who tend to be smart academic underachievers), really brought home the point that our education system underserves anyone who understands a concept more slowly, or more quickly, than the rest of the class.

3. The Orphan Master’s Son (2012)

Goodreads___The_Orphan_Master_s_Son_by_Adam_Johnson_—_Reviews__Discussion__Bookclubs__ListsI’m endlessly fascinated by North Korea, and this novel stoked my fascination. That alone would probably have been enough, but it’s also super well written. I found it beautiful and sad and gripping the whole way through.




4. The Immortal Life of Henrietta Lacks (2010)

Goodreads___The_Immortal_Life_of_Henrietta_Lacks_by_Rebecca_Skloot_—_Reviews__Discussion__Bookclubs__ListsThe author of this book tracked down the family of the long-deceased woman whose incredibly robust tumor cells became the most widely studied strain of human tissue in the world. Her cells have been used by scientists to make countless discoveries in genetics and immunology.

Through interviews with Henrietta Lacks’ descendants, all of whom still live in abject poverty, Rebecca Skloot raises important and nuanced questions about the interplay between science and culture and race. It’d be hard to read this book and still think of science as “pure” or “objective.” Scientists aspire to objectivity, but they’re just as boxed in by their cultural preconceptions as anyone else.

5. Red Rising (2014)

Goodreads___Red_Rising__Red_Rising_Trilogy___1__by_Pierce_Brown_—_Reviews__Discussion__Bookclubs__ListsThis is a super fun young-adult novel about badass vicious teens trying to kill each other. The premise is pretty similar to that of The Hunger Games, but I found the character development and storytelling way better. And the second book in the trilogy, Golden Son, is awesome too! The third one is coming out very soon, and I can’t wait.

Don’t expect any deep truths or transcendent prose. This book is just really fun to read.

6. The Road (2006)

Goodreads___The_Road_by_Cormac_McCarthy_—_Reviews__Discussion__Bookclubs__Lists.pngHey, speaking of books that are really fun to read, this book is not one. It’s a painfully stark novel about a father and son trying to survive in post-apocalyptic North America. I definitely wouldn’t call it a “feel-good” book.

But despite the author’s unremittingly bleak vision, the relationship between the man and the boy (those are the only names given for the characters) is very touching. A friend of mine claims to use this book as a parenting handbook of sorts. I don’t know if I’d go that far, but I do see what he means.

7. History in Three Keys: The Boxers as Event, Experience, and Myth (1997)

Goodreads___History_in_Three_Keys__The_Boxers_as_Event__Experience__and_Myth_by_Paul_A__Cohen_—_Reviews__Discussion__Bookclubs__Lists.pngMy favorite non-fiction book of the year. On one level, this is a history book about the Boxer Rebellion: a grimly compelling episode in its own right. But, moreover, this book is about history itself. Paul A. Cohen describes the Boxer Rebellion through 3 different lenses – experience, history, and myth – each of which represents part of the way we engage with the past.

I came away from this book with a newfound appreciation for the role of the historian in creating history, and a newfound skepticism about the idea that history is composed of objective facts and dates.

[I did a lightning talk (transcript in the first slide’s speaker notes) relating what I learned from this book to post-mortem analysis in DevOps.]

8. The Martian Chronicles (1950)

Goodreads___The_Martian_Chronicles_by_Ray_Bradbury_—_Reviews__Discussion__Bookclubs__ListsI tried to read The Martian Chronicles in high school, and I was like “Pfft! This isn’t science fiction. The science doesn’t make any sense.” I’ve read a lot more sci-fi now, so I decided to give this classic another shot.

What I’ve learned since high school is that the sci-fi I like most isn’t about cool technology or mind-bending thought experiments (although those can add some nice seasoning to a story). It’s about humanity: what continues to define us as human, even when the things we think of basic to our humanity – Earth, language, gender, our bodies – are stripped away?

Bradbury knew exactly what he was on about. After reading these stories with the human question in mind, I finally understand why he’s been so influential in science fiction.

9. The New Jim Crow: Mass Incarceration in the Age of Colorblindness (2009)

Goodreads___The_New_Jim_Crow__Mass_Incarceration_in_the_Age_of_Colorblindness_by_Michelle_Alexander_—_Reviews__Discussion__Bookclubs__ListsI already had strong objections to the War on Drugs on account of the senseless imprisonment of people who’ve done nothing harmful. But this book shows how drug arrest quotas, mandatory minimum sentences, and felon profiling work together as an insidious system to maintain white supremacy in America.

I’d recommend this book to any American. We all need to understand that racial oppression didn’t go away on July 2, 1964; it just adopted more clever camouflage.

10. Anathem (2008)

anathem_cover_-_Google_Search.pngThis is now my favorite Neal Stephenson book. It has his trademark mathyness and detail to a truly engaging story in a richly-imagined universe.

Like most Neal Stephenson books, it’s not for everyone. A lot of time is spent on epistemological ruminations and physics. I love that shit, so I loved this book all the way from page 1 to page 937.


Welp, those are some books I loved this year.

But I want to see what you’re reading, so I can find more books to love. Friend-poke me on GreatBooks!