Post-mortems: content over structure

The value of post-mortems is apparent: failures present opportunities to learn about unexpected behaviors of the system, and learning lets us make improvements to the system’s reliability.

The value of post-mortem documents is much less apparent.

Many R&D orgs will insist that the final draft of a post-mortem document have a particular structure. Common components of this structure include:

  • Start and end time of customer impact
  • Time to detection
  • Time to diagnosis
  • Time to recovery
  • A list of action items, each with a link to a ticket
  • Mitigation action items broken down into categories (e.g. “Prevention,” “Detection,” “Impact”)
  • Specific sections (e.g. “Timeline,” “What went wrong?,” “What can we do better?”)
  • Signoffs/approvals

None of these structural requirements facilitate learning. The benefits of post-mortem analysis come not from the document, but rather from the sense-making processes of which the document is an artifact. In order to understand a given failure, we invent hypotheses, test them against our mental model and the observable facts. In order to choose effective strategies for improvement, we converse and debate. And in order to make any of this matter, we establish accountability for seeing those strategies through.

These social processes are the source of the value of post-mortem analysis. The document is just a souvenir.

But what if you want to do meta-analysis? What if you want to analyze trends in incident characteristics over time, or categorize incidents according to some scheme? Don’t you need structure then?

I suppose you do. But good luck getting any useful information. No matter how much structure you insist on, the data set will be hopelessly noisy. Just try to state a hypothesis that can realistically be tested by a meta-analysis of a single organization’s incident data. I don’t think you can.

But what if structure helps me learn?

If structuring the post-mortem process helps you learn, then by all means! categorize! prompt! But recognize structure as a tool rather than an end in itself. Your learning process may benefit from one kind of structure, while somebody else’s may benefit from a different kind of structure, or less or more structure altogether. But the structure of the learning is what matters; not the structure of the document.

Organizational legibility

If you ask me, it’s all about the bureaucratic drive for legibility. Centralized power craves legibility.

A requirement for post-mortem documents to have a specific, consistent structure doesn’t help us learn or improve. So why do we do it?

Idiosyncratic processes like sense-making and learning are illegible to a command-and-control power structure. They come in diverse and intricate forms, instead of the standardized, codified forms that bureaucracy can parse. In service of legibility, a company’s power structure will insist that the post-mortem process culminate in spreadsheet-ready data items like “customer impact duration,” “time to recovery,” “severity level,” and the like. Centralized power demands these simplifications even if they inhibit learning and improvement. To the bureaucracy, legibility itself is the goal.

As an employee, you probably can’t totally disregard these bureaucratic impositions. But, to the extent you can disregard them, you should. Focus on what really matters: learning and improvement.

Outliers carry information. Don’t leave them on the table

Over a decade ago, I saw this talk by John Rauser. Only recently, though, did I come to realize how incredibly influential this talk has been on my career. Gosh what a great talk! You should watch it.

If you operate a complex system, like a SaaS app, you probably have a dashboard showing a few high-level metrics that summarize the system’s overall state. These metrics (“summary statistics”) are essential. They can reveal many kinds of gross changes (both gross “large scale” and gross “ick”) in the system’s state, over many different time scales. Very useful!

But don’t be misled. Summary statistics reveal certain patterns in the system’s behavior, but they are not identical to the system’s behavior. All summary statistics – yes, even distributions – hide information. They’re lossy. It’s easy to get lulled into the sense that, if an anomaly doesn’t show up in the summary statistics, it doesn’t matter. But a complex system’s behavior is not just curves on a plot. It’s a frothing, many-dimensional vector sum of instant-to-instant interactions.

When you investigate an anomaly in summary statistics, you’re faced with a small number of big facts. Average latency jumped by 20% at such-and-such time. Write IOPS doubled. API server queue depth started rising at some later time. Usually, you “zoom in” from there to find patterns that might explain these changes.

When you instead investigate a specific instance of anomalous behavior, you start with a large number of small facts. A request to such-and-such an endpoint with this-and-that parameter took however many seconds and crashed on line 99 of thing_doer.rb. None of these small facts tell you anything about the system’s overall behavior: this is just a single event among millions or billions or more. But, nevertheless: these small facts can be quite illuminating if you zoom out.

First of all, this probably isn’t the only time a crash like this has ever occurred. Maybe it’s happening multiple times a day. Maybe it happened twice as often this week as it did last week. Maybe it’s happening every time a specific customer makes a specific API request. Maybe that customer is fuming.

And second of all, the reason this event caught our eye in the first place was because it was anomalous. It had some extreme characteristic. Take, for example, a request that was served with very high latency. Perhaps, in the specific anomalous case before us, that extreme latency didn’t cause a problem. But how extreme could it get before it did cause a problem? If it took 20 seconds today, could it take 30 seconds next time? When it hits 30, it’ll time out and throw an error. Or, if multiple requests like this all arrived at the same time, could they exhaust some resource and interfere with other requests?

If the only anomalies you investigate are those that show up in summary statistics, then you’ll only find problems that have already gotten bad enough to move those needles. But if you dig into specific instances of anomalous behavior – “outliers” – then you can often find problems earlier, before they become crises.

5 production surprises worth investigating

As an SRE, I’m a vocal believer in following one’s nose: seeking out surprising phenomena and getting to the bottom of them. By adopting this habit, we can find and fix many classes of problems before they turn into incidents. Over time, this makes things run much smoother.

But what is surprising? How do we decide what to ignore and what to chase down?

Here are 5 kinds of surprise that are worth digging into in production data.

Keep in mind that this list is based on one SRE’s experience. Someone else, with different intuitions about system behavior, would make a different list. And that list would be more valuable to them than this list.

The most important thing is not that we always pick the right surprises to investigate. It’s that we make time, consistently, to seek out and explain surprises.

Anyway. Here’s my list.

1. Long running requests

Pick a time window. Sort all the requests during that window descending by duration. At the top of this list, you’ll find classes of requests that spent extraordinarily long in your system.

Were you expecting to see these specific kinds of requests? If not, then congratulations: you’re surprised. And this is quite likely a surprise worth investigating, because

  1. while these slow requests are running, they’re eating up resources (CPU, memory, sockets, and so on), which gives them an outsized potential to degrade the performance of other, unrelated requests.
  2. without intervention, the underlying problem will probably get worse over time. Why wouldn’t it? It has already gotten this bad. And if it gets bad enough, it will eventually cause customer pain.
  3. many of the phenomena contributing to this slowness probably affect a variety of requests. So, if you can make these requests perform better, you may be able to make other requests perform better too.

We don’t have to rigorously analyze and optimize every slow request that goes through the system. Just by coming to understand the issues that cause our slowest requests to be slow, we often find opportunities to make high-impact improvements and mitigate the risk of ending up on an incident call later.

2. Saturation

Saturation is when units of work are waiting in a queue to be processed – be they web requests, or IP packets, or threads, or what have you.

To the extent we’re trying to serve each request as quickly as possible, saturation anywhere is waste. We shouldn’t expect any saturation. Or, at least, we should strive to thoroughly understand every source of it. If we don’t understand it, it will probably get worse over time.

Find every metric that represents a saturation. Put them all on one dashboard. Look at that dashboard every day.

3. Crashes

Every time an exception bubbles up to the top of the stack, that’s unexpected. If it were expected, then the code would have caught and handled the exception.

A tool like Sentry or Datadog Error Tracking (I mention these specific products only because I know them, not because they’re necessarily the best) lets you classify crashes, and see which ones are new or getting more frequent. Granted: it’s often the case that there are far too many classes of crash to investigate all or even most of them. But this shouldn’t stop us from chasing down some of them, according to our intuition about their relative importance.

We have imperfect information until we get our hands dirty, so we won’t always end up picking the highest-impact investigations to undertake. But fixing crashes is always better than ignoring them, and by dividing up the extant crashes into groups and prioritizing one group at a time, we can create some very useful guarantees.

For example, if we find all the crashes that correspond to deadlocks, and fix those, then we guarantee that our system has no deadlocks. Thereafter, problems caused by deadlocks – which tend to be subtle, elusive, and therefore time-consuming to solve – can no longer quietly sow chaos.

4. Utilization spikes

It’s expected for a utilization metric (for example, network bandwidth or memory utilization) to move around a lot. But it’s not expected for utilization to exhibit large spikes. When this happens, it means some recurring event is using more than its fair share of some resource.

When utilization hits 100%, things will degrade catastrophically and immediately. So if you have utilization spikes representing 20% of capacity, then steady-state utilization only has to be 80% before catastrophic degradations start occurring. Or, if the spikes gets worse, and now they’re 30% of capacity, then 70% capacity becomes the new safe limit. We’ll have to waste at least 30% of our capacity by leaving it idle in order to prevent outages.

So why not understand the spikes now, before they get worse?

5. Correlation between latency and throughput

When we see recurring swings in latency metrics, it’s easy to say to ourselves, “Yeah, well, when we’re under more load, things slow down.” But… why? Systems don’t always behave like that! They do it when there’s a bottleneck. If the system were behaving as expected and no resources were exhausted, then the latency graph would be more or less flat.

In other words, if traffic tends to be higher mid-day on weekdays, and latency also tends to rise mid-day on weekdays, then you’re likely saturating at least one resource. Would you rather find that bottleneck is now, or during an incident?

I hope this list is a good place to start if you’re looking to dig up problems. But, ultimately, you must be the judge of what’s surprising to you. Find something you can’t explain. Explain it. Repeat.

Platform teams don’t need to act like companies

Lately you see a lot of software company R&D teams organized around internal products. The Search Team provides a Search service and its “customers” are the teams whose code consumes that service. The Developer Productivity Team’s product is a suite of tools for managing local development environments and running tests, and its “customers” are the developers who use those tools. And so on.

The idea behind this organizational trick seems to be that product-oriented teams will act like a company. They’ll make better strategic decisions because their goals will be aligned with those of their internal customers.

This is pretty silly.

If a company satisfies the needs of its customers and potential customers, it can grow and thrive and put resources into attracting more revenue. If a company fails to satisfy customer needs, it loses out to competitors. As a company changes its strategy, the market provides feedback. These dynamics don’t exist for an internal team – especially a platform (or “infrastructure,” or “ops”) team.

When asked to think like a company in this way, a platform team will define their product as something like, “a reliable, performant, and secure platform for running software products.” Fine – but think of all the things that a company can do that you can’t do:

  • You can’t attract new customers
  • You can’t pivot to a different product
  • You can’t focus on a different market segment
  • You can’t sacrifice some set of customers to attract another

If you try to “think like a company” as a platform team, you will try to do what successful tech companies do: launch attractive features. But you can waste a lot of time that way, because the most important feature of a software platform is boringness.

If the platform team must act like a company, then it should act like a struggling company that’s desperate to keep its last few enterprise customers. This implies a very different strategy than that of a startup. Change as little as possible and put the bulk of your energy into efforts that increase boringness: documenting, simplifying, and fixing. Don’t build anything exciting if you can avoid it, and if you must build something, build it in service of boringness.

Fix tomorrow’s problems by fixing today’s problems

A bug in our deployment system causes O(N²) latency with respect to the number of deploys that have been performed. At first, it’s too minuscule to notice. But the average deploy latency grows over time. Eventually, deploys start randomly timing out. The deploy pipeline grinds to a halt, and it becomes an emergency.

Or maybe, if we think critically about the deploy latency time series soon enough, it might be obvious well in advance that something’s getting worse. We can fix this problem before it becomes a crisis. But in order to see it, we have to look. And we have to give ourselves time to go down the rabbit hole.

An API server has an edge case that leads to unconstrained memory usage. At first, this edge case only gets hit occasionally, and the API server’s memory usage stays well below capacity. But, as usage patterns evolve, we start to hit this bug more frequently, with larger and larger allocations of memory. For a while, we’re still below the OOMkill threshold. Once we start hitting that threshold, things get ugly. If we still continue to ignore it, then eventually, things will get so ugly that we’ll have to drop what we’re doing and fix this bug.

We had opportunities to see this coming. Depending on our willingness to dig in and investigate surprising phenomena, we could have discovered this problem when the OOMkills started, or even before they started – when these blips were just spikes on a memory graph.

A cron job runs every 30 minutes, and while it runs, it holds a database lock. When it’s first deployed, the cron job doesn’t have much to do, so it runs fast, and no one suffers. Over months, though, the cron job grows sluggish. It just has more work to do. Query pileups start to occur every 30 minutes. We start seeing significant impact on the latency of our application. And, one day, there’s an outage.

We’ll wish we’d dug in back when it was just a slow cron job. Or even when it was just query spikes.

You can prevent many things from turning into fires, but you need space. Space to be curious, to investigate, to explain your findings to yourself and others.

Suppose you spent a week looking for trouble like this, and you only happened to find 1 issue out of these 3. That’s still great, right? Compared to the cost of letting it become a disruption later?

When a system fails, it’s silly to blame practitioners for not seeing the signs. But that doesn’t mean we shouldn’t put in a serious effort to see the signs. If you give yourself space to follow the Huh!, you get opportunities to fix problems before they get worse.

Huh! as a signal

Every time our system fails, and we go to analyze the failure, we find ourselves saying things like “We didn’t know X was happening,” “we didn’t know Y could happen,” and so on. And it’s true: we didn’t know those things.

We can never predict with certainty what the next system failure will be. But we can predict, because painful experience has taught us, that some or all of the causes of that failure will be surprising.

We can use that!

When we go looking at data (and by “data” I mostly mean logs, traces, metrics, and so on, but data can be many things), sometimes we see something weird, and we go like, Huh!. That Huh! is a signal. If we follow that Huh! – get to the bottom of it, figure it out, make it not surprising anymore – two things happen. First, we get a chance to correct a latent problem which might some day contribute to a failure. And second, we make our mental model that much better.

Of course, any individual Huh! could turn out to be nothing. Perhaps there’s a bug. Perhaps circumstances have shifted, and our expectations no longer line up with reality. Or perhaps it’s just a monitoring blip. We won’t know until we run it down.

But, whatever the shortcomings of any particular investigation, a habit of investigating surprises has many attractive qualities. The main one is that we get to fix problems before those problems get worse, start bouncing off other problems, and cause fires. In other words: our system runs smoother. Consider what that’s worth.

Managing entropy in complex systems: the Maxwell’s Demon approach


Take a nontrivial software system and put it on the internet. Problems will emerge. Some problems will be serious; others less so. We won’t notice most of them.

A software system in production is a bucket filled with fluid. Each particle of the fluid is a discrete problem. The problems bounce around and collide with each other and do all kinds of stochastic stuff from moment to moment.

At the very bottom of the bucket are problems so minute that they can hardly be called problems at all. They have low energy. They don’t interact much with each other or with anything else.

Higher up, you find higher-and-higher-energy particles. Problems that cause small hiccups, or sporadic bouts of sluggishness.

Somewhere near the top, there’s a threshold. When a problem gets enough energy to cross this threshold, we passively notice it. Maybe it causes an outage, or maybe it just causes a false positive alert. Maybe a support ticket gets filed. Maybe it’s just a weird spike in a graph. However we perceive it, we’re forced to take it seriously.

Once problems get enough energy, we can’t help but notice them. But before that, they already exist.

What happens before a particle jumps this energy threshold?

Perhaps the problem is entirely novel – no part of it existed before now. A code deploy with a totally self-contained bug. A DOS attack. If it’s something like that: oh well.

But more often, a problem we just perceived has been acted upon by a more gradual process. Problems bounce around in the bucket, and occasionally they bounce into each other and you get a problem with higher energy than before. Or circumstances shift, and a problem that was once no big deal becomes a big deal. Over time, particles that started in the middle – or even at the bottom – can work their way up to the passive perception line.

If problems usually hang out below the perception threshold for a while before they cross it, then we can take advantage of that in two ways. One way is to lower the threshold for passive perception. Raise the sensitivity of our monitors without sacrificing specificity. This is hard, but worthwhile.

The other way to take advantage of the fluid-like behavior of problems is to spend energy finding and fixing problems before they boil. I call this the Maxwell’s demon approach. You go looking for trouble. You poke around in dashboards and traces and logs, find things that look weird, turn them around in your hands until you understand them, and ultimately fix them. Maybe you have a ticket backlog of possible problems you’ve found, and it’s somebody’s job to burn down that backlog. Ideally it’s the job of a team using a shared-context system like differential diagnosis.

If you make it somebody’s job to be Maxwell’s demon, you can find and fix all sorts of problems before they become bigger problems. If you don’t make it someone’s job, then no problem will get taken seriously until it’s an outage.

3 Things That Make Encryption Easier

Almost everyone (especially in ops) knows they should be better about encrypting secret data. And yet most organizations have at least a few passwords and secret keys checked into Git somewhere.

The ideal solution would be for everyone at your company to use PGP all the time, but that is a huge pain. Encryption tools are annoying to use, and a significant time investment is required to learn to use them correctly. And if security is hard, people will always find a way to avoid it.

In the last few months, I’ve adopted 3 new technologies that make secure storage and exchange of secret information at least bearable.

1: Blackbox

StackExchange’s blackbox tool makes it easy to store encrypted data in a Git repository. First you need to import into your personal keyring all the PGP keys you want to grant access to. Then you initialize the blackbox directory structure:


dan@george:/tmp/secrets$ blackbox_initialize
Enable blackbox for this git repo? (yes/no) yes
VCS_TYPE: git
NEXT STEP: You need to manually check these in:
git commit -m'INITIALIZE BLACKBOX' keyrings /private/tmp/secrets/.gitignore
dan@george:/tmp/secrets$ git commit -m'INITIALIZE BLACKBOX' keyrings /private/tmp/secrets/.gitignore
[master 695d29a] INITIALIZE BLACKBOX
2 files changed, 3 insertions(+)
create mode 100644 .gitignore
create mode 100644 keyrings/live/blackbox-files.txt

view raw

gistfile1.txt

hosted with ❤ by GitHub

Once you’ve initialized blackbox, you can start adding administrators, which are keys that will be granted access to the secret data in the repository:


dan@george:/tmp/secrets$ blackbox_addadmin dan@danslimmon.com
gpg: /private/tmp/secrets/keyrings/live/trustdb.gpg: trustdb created
gpg: key A9FD8CCF: public key "Dan Slimmon " imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
NEXT STEP: You need to manually check these in:
git commit -m'NEW ADMIN: dan@danslimmon.com' keyrings/live/pubring.gpg keyrings/live/trustdb.gpg keyrings/live/blackbox-admins.txt
dan@george:/tmp/secrets$ git commit -m'NEW ADMIN: dan@danslimmon.com' keyrings/live/pubring.gpg keyrings/live/trustdb.gpg keyrings/live/blackbox-admins.txt
[master (root-commit) 94108f6] NEW ADMIN: dan@danslimmon.com
3 files changed, 2 insertions(+)
create mode 100644 keyrings/live/blackbox-admins.txt
create mode 100644 keyrings/live/pubring.gpg
create mode 100644 keyrings/live/trustdb.gpg

view raw

gistfile1.txt

hosted with ❤ by GitHub

Now you can start adding secrets securely:


dan@george:/tmp/secrets$ echo "nuclear launch code: SashaMalia44" > launchcode.txt
dan@george:/tmp/secrets$ blackbox_register_new_file launchcode.txt
========== PLAINFILE launchcode.txt
========== ENCRYPTED launchcode.txt.gpg
========== Importing keychain: START
gpg: Total number processed: 1
gpg: unchanged: 1
========== Importing keychain: DONE
========== Encrypting: launchcode.txt
========== Encrypting: DONE
========== Adding file to list.
========== CREATED: launchcode.txt.gpg
========== UPDATING REPO:
NOTE: "already tracked!" messages are safe to ignore.
[master 2a5eb65] registered in blackbox: launchcode.txt
2 files changed, 1 insertion(+)
create mode 100644 launchcode.txt.gpg
========== UPDATING VCS: DONE
Local repo updated. Please push when ready.
git push

view raw

gistfile1.txt

hosted with ❤ by GitHub

I really like how this tool gives my team a distributed, version-controlled repository of secret information. We can even give other teams access to the repository without worrying about exposing secrets!

My team uses this tool for shared passwords and SSL private keys, and it works great. Check it out.

2: Salt

At my company, we use Salt for config management. Like most config management systems, Salt lets you decouple the values in a config file from the file itself. You make a template of the config file that will appear on the node, and you put the values in a pillar (equivalent to a Chef databag, or a Puppet… whatever it’s called in Puppet).

So instead of storing a config file like this:


[myapp]
username = app_user
password = hunter2

view raw

blah.ini

hosted with ❤ by GitHub

You store a template like this:


[myapp]
username = {{ pillar['myapp']['username'] }}
password = {{ pillar['myapp']['password'] }}

view raw

blah.ini

hosted with ❤ by GitHub

and a pillar (which is just a YAML file) like this:


myapp:
username: app_user
password: hunter2

view raw

pillar.yaml

hosted with ❤ by GitHub

Now suppose you don’t want to commit that super-secure password directly to your Salt repository. Instead, you can create a PGP keypair, and give the private key to your Salt server. Then you can encrypt the password with that key. Your pillar will now look like this:


#!yaml|gpg
myapp:
username: app_user
password: |
—–BEGIN PGP MESSAGE—–
—–END PGP MESSAGE—–

view raw

pillar.yaml

hosted with ❤ by GitHub

When processing your template on the target node, Salt will seamlessly decrypt the password for you.

I love that I can give non-admins access to our Salt repo, and let them submit pull requests, without worrying about leaking passwords. To learn more about this Salt functionality, you can read the documentation for salt.renderers.gpg.

3: SecretShare

Salt’s GPG renderer and blackbox are great ways to store shared secret data, but what about transmitting secrets to particular people? In most organizations, when passwords and such need to be transmitted from employee to employee, insecure methods are used. Email, chat, and Google docs are very common media for transmitting secrets. They’re all saved indefinitely, meaning that an attacker who gains access to your account can gain access to all the secret info you’ve ever sent or received.

To make transmitting secrets as easy and secure as possible, my teammate Alex created secretshare. It lets you transmit arbitrary secret data to others in your organization, and it has immense advantages over other systems:

  • Secrets are never transmitted or stored in the clear, so a snooper can’t even read them if they manage to compromise the Amazon S3 bucket in which they’re stored.
  • Secrets are deleted from S3 after 24-48 hours, so a snooper can’t go back through the recipient’s or sender’s communication history later and retrieve them.
  • Secrets are encrypted with a one-time-use key, so a snooper can’t use the key from one secret to steal another.
  • Users don’t need Amazon AWS credentials, so a snooper can’t steal those credentials from a user.

Right now, secretshare only exists as a command-line utility, but we’re very close to having a web UI as well, which will make it even easier for non-technical people to use.

 

Security’s worst enemy is bad UX. It’s critical to make the most secure path also the easiest path. That’s what these three solutions aim to do, and they’ve made me feel much more comfortable with the security of secret data at my company. I hope they can do the same for you.

Troubleshooting On A Distributed Team Without Losing Common Ground

I work on a team that fixes complex systems under time pressure. My teammates have different skill sets, different priorities, and different levels of expertise. But we all have to troubleshoot and solve problems together.

This is really hard to do effectively. Fortunately for us in the relatively new domain of DevOps, situations like ours have been studied extensively in the last couple decades. We can use the results of this research to inform our own processes and automation for troubleshooting.

One of the most important concepts to emerge from recent teamwork research, common ground, helps us understand why collaborative troubleshooting breaks down over time. This breakdown leads to wasted effort and mistakes, even if the team maintains constant communication in a chat room. But if we extend ChatOps by drawing on some ideas from medical diagnosis, we can make troubleshooting way easier without losing the benefits of fluid team conversation.

Common Ground

Ergonomics researchers D.D. Woods and Gary Klein (the latter of whom I wrote about in What makes an expert an expert?) published a phenomenally insightful paper in 2004 called Common Ground and Coordination in Joint Activity. In it, they describe a particular kind of failure that occurs when people engage in joint cognition: the Fundamental Common Ground Breakdown. Once you learn about the Fundamental Common Ground Breakdown, you see it everywhere. Here’s how the Woods/Klein paper describes the FCGB:

  • Party A believes that Party B possesses some knowledge
  • Party B doesn’t have this knowledge, and doesn’t know he is supposed to have it.
  • Therefore, he or she doesn’t request it.
  • This lack of a request confirms to Party A that Party B has the knowledge.

When this happens, Party A and Party B lose common ground, which Woods & Klein define as “pertinent knowledge, beliefs and assumptions that are shared among the involved parties.” The two parties start making incorrect assumptions about each other’s knowledge and beliefs, which causes their common ground to break down further and further. Eventually they reach a coordination surprise, which forces them to re-synchronize their understanding of the coordinated activity:

csel_eng_ohio-state_edu_woods_distributed_CG_final_pdf

Seriously, the FCGB is everywhere. Check out the paper.

I’m especially interested in one particular area where an understanding of common ground can help us do better teamwork: joint troubleshooting.

Common Ground Breakdown in Chatroom Troubleshooting

Everybody’s into ChatOps these days, and I totally get it. When a critical system is broken, it’s super useful to get everybody in the same room and hash it out. ChatOps allows everybody to track progress, coordinate activities, and share results. And it also helps to have lots of different roles represented in the room:

  • Operations folks, to provide insight into the differences between the system’s normal behavior and its current state
  • Software engineers, who bring detailed knowledge of the ways subsystems are supposed to work
  • Account managers and product managers and support reps: not just for their ability to translate technical jargon into the customer’s language for status reporting, but also because their understanding of customer needs can help establish the right priorities
  • Q.A. engineers, who can rule out certain paths of investigation early with their intuition for the ways in which subsystems tend to fail

The process of communicating across role boundaries isn’t just overhead: it helps us refine our own understanding, look for extra evidence, and empathize with each other’s perspectives.

But ChatOps still offers a lot of opportunities for common ground breakdown. The FCGB can occur whenever different people interpret the same facts in different ways. Interpretations can differ for many different reasons:

  • Some people have less technical fluency in the system than others. A statement like “OOM killer just killed Cassandra on db014” might change an ops engineer’s whole understanding of the problem, but such a shift could fly under the radar of, say, a support engineer.
  • Some people are multitasking. They may have a stake in the troubleshooting effort but be unable to internalize every detail from the chat room in real time.
  • Some people are co-located. They find it easier to discuss the problem using mouth words or by physically showing each other graphs, thereby adjusting their own shared understanding without transmitting these adjustments to the rest of the team.
  • Some people enter the conversation late, or leave for a while and come back. These people will miss common ground changes that happen during their absence.

These FCGB opportunities all become more pronounced as the troubleshooting drags on and folks become tired, bored, and confused. And when somebody says they’ve lost track of common ground, what do we do? Two main things: we provide a summary of recent events and let the person ask questions until they feel comfortable; or we tell them to read the backlog.

The Q&A approach has serious drawbacks. First of all, it requires somebody knowledgeable to stop what they’re doing and summarize the situation. If people are frequently leaving and entering the chat room, you end up with a big distraction. Second of all, it leaves lots of room for important information to get missed. The Fundamental Common Ground Breakdown happens when somebody doesn’t know what to ask, so fixing it with a Q&A session is kind of silly.

The other way people catch up with the troubleshooting effort is by reading the backlog. This is even more inefficient than Q&A. Here’s the kind of stuff you have to dig through when you’re reading a chat backlog:

tng-hipchat

There’s a lot to unpack there – and that’s just 18 messages! Imagine piecing together a troubleshooting effort that’s gone on for hours, or days. It would take forever, and you’d still make a lot of mistakes. It’s just not a good way to preserve common ground.

So what do we need?

Differential Diagnosis as an Engine of Common Ground

I’ve blogged before about how much I love differential diagnosis. It’s a formalism that doctors use to keep the diagnostic process moving in the right direction. I’ve used it many times in ops since I learned about it. It’s incredibly useful.

In differential diagnosis, you get together with your team in front of a whiteboard – making sure to bring together people from a wide variety of roles – and you go through a cycle of 3 steps:

  1. Identify symptoms. Write down all the anomalies you’ve seen. Don’t try to connect the dots just yet; just write down your observations.
  2. Generate hypotheses. Brainstorm explanations for the symptoms you’ve observed. This is where it really helps to have a good cross-section of roles represented. The more diverse the ideas you write down, the better.
  3. Test hypotheses. Now that you have a list of things that might be causing the problem, you start narrowing down that list by coming up with a test that will prove or disprove a certain hypothesis.

Once you’re done with step #3, you can cross out a hypothesis or two. Then you head back to step #1 and repeat the cycle until the problem is identified.

A big part of the power of differential diagnosis is that it’s written down. Anybody can walk into the room, read the whiteboard, and understand the state of the collaborative effort. It cuts down on redundant Q&A, because the most salient information is summarized on the board. It eliminates inefficient chat log reading – the chat log is still there, but you use it to search for specific pieces of information instead of reading it like a novel. But, most importantly, differential diagnosis cuts down on fundamental common ground breakdowns, because everybody has agreed to accept what’s on the whiteboard as the canonical state of troubleshooting.

Integrating Differential Diagnosis with ChatOps

We don’t want to lose the off-the-cuff, conversational nature of ChatOps. But we need a structured source of truth to provide a point-in-time understanding of the effort. And we (read: I) don’t want to write a whole damn software project to make that happen.

My proposal is this: use Trello for differential diagnosis, and integrate it with the chat through a Hubot plugin. I haven’t written this plugin yet, but it shouldn’t take long (I’ll probably fork hubot-trello and start from there). That way people could update the list of symptoms, hypotheses, and tests on the fly, and they’d always have a central source of common ground to refer to.

In the system I envision, the chat room conversation would be peppered with statements like:

Geordi: hubot symptom warp engine going full speed, but ship not moving

Hubot: Created (symp0): warp engine going full speed, but ship not moving

Beverly: hubot falsify hypo1

Hubot: Falsified (hypo1): feedback loop between graviton emitter and graviton roaster

Geordi: hubot finish test1

Hubot: Marked (test1) finished: reboot the quantum phase allometer

And the resulting differential diagnosis board, containing the agreed-upon state of the troubleshooting effort, might look like this example, with cards labeled to indicate that they’re no longer in play.

What do you think?

Let me know if your organization already has something like this, or has tried a formal differential diagnosis approach before. I’d love to read some observations about your team’s process in the comments. Also, VictorOps has a pretty neat suite of tools that approaches what I have in mind, but I still think a more conceptually structured (not to mention free) solution could be very useful.

Automation is most effective when it’s a team player. By using automation to preserve common ground, we can solve problems faster and more thoroughly, with less frustration and less waste. And that all sounds pretty good to me.

You Know Who’s Smart? Friggin’ Doctors, Man.

Inspired by Steve Bennett‘s talk at Velocity 2012 (slides here. I swear it’s a great talk; I didn’t just think he was smart because he’s British), I’ve been trying lately to apply medicine’s differential diagnosis approach to my ops problem solving.

If you’ve ever seen an episode of “House M.D,” you’ll recognize the approach right away.

Problem-Based Learning

Since my girlfriend (partner/common-law fiancée/non-Platonic ladyperson/whatever) is a veterinary student, I end up hearing a lot about medical reasoning. One of her classes in first year was “Problem-Based Learning,” or as I called it, “House D.V.M.”. The format of this class should sound familiar to anyone who’s worked in ops, or dev, or the middle bit of any Venn diagram thereof.

You walk in on Monday and grab a worksheet. This worksheet describes the symptoms of some cat or pug or gila monster or headcrab that was recently treated in the hospital. Your homework: figure out what might be wrong with the animal, and recommend a course of treatment and testing.

On Tuesday, you’re given worksheet number 2. It says what a real vet did, given Monday’s info, and then it lists the results of the tests that the vet ordered. So the process starts over: your homework is to infer from the test results what could be wrong with the animal, and then figure out what tests or treatments to administer next.

This process repeats until  Friday, by which point you’ve hopefully figured out what the hell.

When I heard this, I thought it was all very cool. But I didn’t pick up on the parallels with my own work, which are staggering. And what really should have caught my attention, in retrospect, is that this was a course they were taking. They’re teaching a deductive process!

Can We Formalize It? Yes We Can!

In tech, our egos often impede learning. We’re smart and we’ve built a unique, intricate system that nobody else understands as well as we do. “Procedures” and “methodologies” disgust us: it’s just so enterprisey to imagine that any one framework could be applied to the novel, cutting-edge complexities we’re grokking with our enormous hacker brains.

Give it a rest. Humans have been teaching each other how to troubleshoot esoteric problems in complex systems for friggin millennia. That’s what medicine is.

When faced with a challenging issue to troubleshoot, doctors will turn to a deductive process called “differential diagnosis.” I’m not going to describe it in that much detail; if you want more, then tell Steve Bennett to write a book. Or watch a few episodes of House. But basically the process goes like this:

  • Write down what you know: the symptoms.
  • Brainstorm possible causes (“differentials”) for these symptoms.
  • Figure out a test that will rule out (“falsify”) some of the differentials, and perform the test.
  • If you end up falsifying all your differentials, then clearly you didn’t brainstorm hard enough. Revisit your assumptions and come up with more ideas.

This simple process keeps you moving forward without getting lost in your own creativity.

Mnemonics As Brainstorming Aids

The brainstorming step of this deductive process (“writing down your differentials”) is critical. Write down whatever leaps to mind.

Doctors have mnemonic devices to help cover all the bases here. One of the most popular is VINDICATE (Vascular/Inflammatory/Neoplastic/Degenerative/Idiopathic/Congenital/Autoimmune/ Traumatic/Endocrine). They go through this list and ask “Could it be something in this category?” The list covers all the systems in the body, so if the doctor seriously considers each of the letters, they’ll usually come up with the right differential (although they may not know it yet).

Vets have a slightly different go-to mnemonic when listing differentials: DAMNIT. There are several different meanings for each letter, but the gist of it is Degenerative, Anomalous, Metabolic, Nutritional, Inflammatory, Traumatic. Besides being a mild oath (my second-favorite kind of oath), this device has the advantage of putting more focus on the trouble’s mode of operation, rather than its location.

These mnemonics are super useful to doctors, and it’s not that hard to come up with your own version. Bennett suggests CASHWOUND (see his slides to find out why).

No Seriously, Try It. It’s Great.

The other day, we were looking at our contribution dashboard and we noticed this (artist’s rendering):

Brief dip in donations
Brief dip in donations

 

That dip in donations lasted about 10 minutes, and we found it extremely disturbing. So we piled into a conference room with a clean whiteboard, and we started writing down differentials.

A. Firewall glitch between card processors and Internet

B. Database failure causing donation pages not to load

C. Failures from the third-party payment gateway

D. Long response times from the payment gateway

E. Errors in our payment-processing application

F. DNS lookup failures for the payment gateway

Admittedly this is not a very long list, and we could’ve brainstormed better. But anyway, we started trying to pick apart the hypotheses.

We began with a prognostic approach. That means we judged hypothesis (B) to be the most terrifying, so we investigated it first. We checked out the web access logs and found that donation pages had been loading just fine for our users. Phew.

The next hypotheses to test were (C) and (D). Here we had switched to a probabilistic approach — we’d seen this payment gateway fail before, so why shouldn’t it happen again? To test this hypothesis, we checked two sources: our own application’s logs (which would report gateway failures), and Twitter search. Neither turned up anything promising. So now we had these differentials (including a new one devised by my boss, who had wandered in):

A. Firewall glitch between card processors and Internet

B. Database failure causing donation pages not to load

C. Failures from the third-party payment gateway

D. Long response times from the payment gateway

E. Errors in our payment-processing application

F. DNS lookup failures for the payment gateway

G. Users were redirected to a different site

(E) is pretty severe (if not particularly likely, since we hadn’t deployed the payment-processing code recently), so we investigated that next. No joy — the application’s logs were clean. Next up was (A), but it proved false as well, since we found no errors or abnormal behavior in the firewall logs.

So all we had left was (F) and (G). Finally we were able to determine that a client was A/B testing the donation page by randomly redirecting half of the traffic with Javascript. So everything was fine.

Throughout this process, I found that the differential diagnosis technique helped focus the team. Nobody stepped on each other’s toes, we were constantly making progress, and nobody had the feeling of groping in the dark that one can get when one troubleshoots without a method.

Try it out some time!